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CRACK PROBLEM IN TWO-DIMENSIONAL ELASTICITY THEORY

S. M. Sharfuddin

(Rajshahi Government College, Rajshahi, East Pakistan)

SUMMARY

In this paper the stresses and displacement round a crack under various conditions have been investigated.
The appropriate complex potentials are derived for four types of loading. These are: constant normal pressure on
both sides of the crack with zero shear on the crack with zero principal stress at infinity, shear round the
crack with zero finite stress at infinity, simple tension at infinity at a given angle to x-axis, shear at infinity,
The case when the crack is subject to shear which is the case for nucleation of slip in fundamenral metal-
lurgical problem has been studied in detail. The problem has been solved after converting it into a Hilbert's
Problem. Curves showing ischromatic lines (lines of constant stress) are sketched in,

1. Introduction.

The fundamental concept of Griffith's [1,2] theory of rapture is that the
bounding surfaces of a solid possess a surface tension, just as those of a
liquid do, and that, when a crack spreads, the decrease in the strain energy
is balanced by an increase in the potential energy due to surface tension.
The calculation of the effect of the pressure of a crack on the energy of
an elastic body is based on Inglish's [4] solution of the two-dimensional
equation of elastic equilibrium in the space bounded by two concentric el-
lipses, the crack then being taken to be an ellipse of zero minor axis. The
nature of the co-ordinate system used by Griffith does not lend itself easily
to computation. Westergaard [9] gave simple solution for the case when
it is supposed that the body is deformed by the opening of a crack under
the action of a uniform pressure. The disadvantage of Westergaard's stress
function is that it refers only to the case when the crack is subjected to
uniform pressure. Sneddon [7, 8] considered the case when the crack is
subjected tovariable internal pressure by making use of the theory of Fourier
Transforms and dual integral equations. Sanders [11], Green [10] and
Koiter [12,13] have tackled some crack problems of uniform tension. In
this paper most general crack problem has been investigated. The problem
has been solved after converting it into a Hilbert's Problem [3].

2. Fundamental Equations.

Following Muskhelishvili [5] when the body forces are absent the stress
components X%, yy, Xy and the complex displacement D=u+iv can be ex-
pressed in terms of two analytic functions (z), w(z) of a complex variable
z =X+1iy, by means of the equations

2(Xx + ¥y) = '(z) + Q' (2), (2.1)
2(X% - yy + 2ixy) = -z @' (2) - @"(2), (2.2)
8uD = 8u(u+iv) = k Q(z) - zQ'(z) - w'(z), (2.3)

where yis the shear modulus, k=3 -4n, n is Poisson's ratio and the prime
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denotes differentiation with respect to z. From (2. 1) and (2. 2) by subtraction
47 - 1Xy) = @' (z) + Q'(z) + z 2'(2) + 0" (2). (2.4)
If T, and T, be the principal stresses at infinity in lines making an angle

o and « +% with x~axis and if the force resultant round the crack be X+iY

then for large values of lzl the complex potentials have the forms

Q(z) =T, + T, - -2—7%%1 1y EZAHZ'“,
_ . (2.5)
w"(z) = - 2(T, - T,)e2ia+ £E 2‘1—;-1{1-5/_;.+n;=:23nz-n
Introducing a new function y(z) where
w'(z) = - z 2(z) - y(z); v(z) = y(3). (2.6)
The equations (2.4) and (2. 3) can be written as
4(35 - i%y) = @(2) - ¥ () +(z - z) Q'(z). (2.7)
8uD =k Q(z) + y(z) + (2 - z) @ (z). (2.8)

From (2.5) and (2.6) we get

= - gia_ 2K X-1y 1 -2
¥'(z) = - (T, + Ty) + 2(T;- Ty)e?le- 22 Zmd ~ 4 0(272). (2.9)
3. Boundary conditions on the surface of the crack.

It will be assumed that the crack occupies the region {x{ < b of the real
axis and that

Lim y Q"(z) = 0. (3.1)
y_-O
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Fig 1.
From (2.7) and (3.1) the boundary conditions at the crack are
4Ty - ix9), = 2, () - v (), (3. 2)

4(yy - iXy)_ = @ _(t) - v, (t), (3.3)
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where t is the complex number (actually real here) denoting points on the
x-axis in the region |x| < t and + and - sign indicate the surface values
at the upper and lower surfaces of the crack respectively. By addition and
subtraction we get

[o(t) -y ], + [a(t) - v(t) ],

=43y, + ¥¥) - (XY, + X5) = qt) (say), (3.4a)
(@) +y @], - [ + vy ()]
=437, - §7.) - iXF,- X3) = q,(t) (say). (3.4b)

The solution of (3.4b) is given by Cauchy Integral

1 qg(t)
Q' (z) + v'(z) = 5

dt + 2(T; - T,)e?i® (3.5)
t -2z

The equation (3. 4a) constitutes particular case of Hilbert's Problem [3]. The
required solution is given by

q,(t)dt
sﬂﬂ-wu)=?ﬁf - +2(2)P(2) , (3.6)
TS o) (t-2)

L
where the Plemelj function [6] %(z) in this case is given by
X(z) = (22 - b?)°H, (3.7)
x,(t) denotes the limiting values on the line L (given by |x| < b, y=0)
when approached from the positive region y > 0 and P (z) is a polynomial.

Since X(z) = 0(z°’l) at infinity, the limiting conditions in (2.5) and (2.9)
show that P(z) is linear in z i.e.

P(z) = a,+ a; z . (3.8)
4. Ewvaluation of Inlegrals.
It has been seen that (Muskhelishvili [5])
at)d q,(t") dt
— =i —_— (4.1)
x4(t) (t - 2) x(t') (t' - 2)
L c
where C is the contour as shown in Figure 2, the point z will be assumed
outside the contour, q,(t') is obtained by replacing t by t' in q (t).
y

A
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Fig 2.
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Now for large values of t'

1
x(t")

= (t'2- b2) =t + O(t"l) . (4.2)

Taking q (t) = C, and qy(t) = C, where C, and C, are constants

c,dt 1

1 = 2 2y 2
— _———Clt(z-b) -z:l. (4.3)
x,(t) (t-2)
Also
b
L Cof g G ap
= dt = — t_z~—1ogm. (4.4)
t-z 2ri 27i
L -b
Therefore we get
Cy C, z
Q(z) = 1og—z;—b +— |1 - .
4 ztb oy (22 - b2)?
(4.5)
a,taz .
+ 0 + (T]_ - r-[\2 )eZIOL,
2(z2 - b?)
C
v'(z) =_E]_ng;_g __(_:i 1 - ___._z_l—l
4ri 2 4 (22 - b2)Z
a,taz 01
e +(Ty - Ty)e*'™
SRRV (T, 2)
for large values of |z]|,
2bCy a,t ajz . 0
Q(z) = - + +(T, - T,)e*%+ 0(z7%), (4.7)
47 iz 2z
ap taz .
y'(z) = - 2BC2. (T, - Ty)e?%+ O(z-2). (4.8)
4riz 2z
Comparing (4.7), (4.8) with (2.5) and (2.9) we get
_ 24 . _2(k-1) .
Co== (x+1Y), a, = =55—+ (x+1Y) .
b ° mlktl) (4.9)
a; = 2(T,;+ Ty) - (T; - Ty)e?ie
If at any point the principal stresses are 7, and T, then
® =7, + T, and |$] = Voo = |7, - 7. (4.10)

The lines of maximum shear will be at % to the lines of principal stresses

and the maximum shear is %I T 72|,
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Fig 3.
5. Special Cases.

Case (). We shall now consider the case when the crack is subject to the
following conditions:

Zero principal stresses at infinity, T1 = T2 = 0.
Zero shear on the crack, Xy = Xy_ = 0. (5.1)
Constant normal pressure p on both sides of the crack
¥v, = ¥y, = -p).
In this case
C,=-8p, C,=0, a, =0, a; =0. (5.2)
Thus
z
Q'(z) = -2p |1 - ———1|= -7'(2) (5.3)
Vz? - b2
Therefore
= 1 ) 7
YT, TR (z) + Q' (z)
r 0, + 8, (5.4)
= 2p cos ( ) -
rir, 2
Also
29 = (z - z) Q'(z) + 7'(2) + Q' (2) (5.5)
giving
9 -
(T1 - Tz) = §¢ = 4p2b4y2/(r1r2)3. (5.6)
i 3/2
Therefore maximum shear = %ITI - 7'2| = p r—s?—g<~——> ) (5.1)
r.r
1°2°

The displacement D is given by
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8uD = kQ(z) +y(z) + (z - z) Q(z)

= - 2kp [z - VBB + 2p |7 - V- BT (5.8)

Z
+2p(Z —E) [:1 -—Z;-TZ].

When y = 0 i.e. z = Z,

0; + 0,4
8uD = 2p(1 - k) x + 2p(k - 1) Vr ;r, cos
y=0 2
(5.9)
i 01+ B9
+ i2p(k + 1) Vr1r2 sin — —
2
On the surface of the crack i.e. when |x|< b and 0, = 7. 6, = 0,
8uu = 2p(l - k)x, 8uv = 2p(k + 1) Vryr,. (5.10)

Y=0 Y=0

Thus we see that the tangential displacement of a point varies as its distance
from the y-axis and vanishes at the origin. The transverse displacement
is zero when x = + b and finite (# 0) on the remaining part of the crack.
Both the displacements are bounded.

Case (ii). Let us consider the case when the crack is subjected to shear
and there is zero resultant stress at infinity.
In this case we have

_ .

Xy, = Xy_ = - s (constant). (5.11)

Thus x +1iY =0, C,=0=a_=a

o 1’

C,=81is . (5.12)

F
-be—S5w-|() *— «— +b X

Fig 4,
Therefore in this case

z
Q'(z) = -vy'(z) = 21is [ - -—-——:, (5.13a)

22 - b2
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2iS i3(0,+0,) -ige-*1* %2
$ = -2iS + —— liyb%e 2 ' Z+ rror,e 2 (5.13b)
(r. 1. )32 1°2
1%e
So we have
, 2rs 0, +0,
T, T Ty = Sin{@ - ————— 1}, (5.14)
Vrlr2 2
: y*p* r? Yb? 3
T - Ty| = M = 2S(1+ + + 2 Sin5(0,+ 0,)
(ryry) 17y (r;r,)
1
r 6,+0, Yblr
-2 Cos|6 - -2 Sin(0+0 1+6y)
ryr, 2 (rlrz)2

(5.15)

In order to get the approximate value of the maximum shear near the end
(b, 0) of the crack the finite terms of equation (5. 13b) are dropped and we take
0 =0,20, yQr; Sin 6, r2b, r,;Q22b. (5.16)

Thus

is 5o 3
§ = — VE|e21y 3¢'2°1) (5.17)
2vz2 h1

Therefore near the end (b, 0)
18] =7, - 7] S\/— (5 +3Cos 26,)"". (5.18)
and the maximum shear in th1s case = 3|71 - Tol| max.= S Voo (5.19)

Also

172 172

+8
- 45{1 S e-l( 3 Z)J . (5.20)

r Ty

81%9y L9162
8uD =2iSK|re® -Vr r_e 2 -2iS|re® -Vrre 2

Since we may write y = r; Sin 8; =Ty Sin8;, 0<8<7, wenote that the dis-
placements are finite everywhere. Now consider |x| < b.

Ony =0,andy = 0_i.e. on the upper and lower faces of the crack ¢, = 7,
@, = 0. Thus

8uD = 2iSr[ke® - e ] + 25Vr 1, (k +1). (5.21)
y=0
Therefore

8uu = 2S Vryr, (k+1), (8 = 0),
¥=0

(5.22)
8uv = 2S(k-1)x , (8 = 0),
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and
8uu = - 28 Vrry(k+1), (8 = =),
Y=0
(5.23)
Suv = -28S (k - 1) x , (8 = =),
y=0

Thus in this case both the tangential and transverse displacements are
bounded. The transverse displacement vanishes at the origin and varies
with the x-co-ordinate of the point.

Case (i77). Let us now consider the case when the crack is stress-free
and T, = 0 i.e. simple tension at infinity at an angle « to x-axis. In this case

C;=Cy=2a,=0, a; = 2T, (1 - e%9). (5.24)
and therefore
T.z(1 - %)

Q'(Z) = - + TleZia'
(Z2— b2)7

(5.25)

I
]
+
=
—
[¢]
=
Q

v'(z)

Thus

2Tr 0, +0, 2T r 9, +80,
T .+ T, = Cos(- >— Cos(@———+2a>+

r,r, 2 rr, 2
+ 2T, Cos 24¢q, (5. 26)
: 2 . 6,40
2iyb™ T, 120, +65) iT, e 1 2) .
d =————Fe? t——e 2 /Sin 20+ T,Cos 2a. (5.27)
(r;ry)e Vrr,
When o = 7/2
Tr 0; + 6,
T, Ty 4 Cos - —)- 2T (5.28)
rr, 2
4y2b4 v . 3
|77 = 18] = T, +4 57,510 5 (017 05) + 1 (5.29)
(ryry) (ryry)

To obtain the approximate value of the maximum shear near the end (b, 0)
of the crack, we take

2
Yo T
B =21 — L oifre)

(I‘1I‘2)3/2

(5.30)

giving
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¥b?

71'72|=|‘N=2T1 (5.31)

3/2
(r,ry)
Thus the maximum shear is (Yb? Tl)/(r1r2)3/2.
The displacement is given by

01+ 69 81+ 69
. i -i
8uD=T,r(Kel® +e=i%) e + T Vr 1, (1-"* ){Ke Te P } +

2 _1(9_91"'92
-2in1{-1+ e 2 } (5.32)
Vrir,
If « = 7/2,
01+ 6y 81+ 69
) ) i -i
8ubD = - Tlr(Ke19 +e) + 2T1\/r1r2{Ke1 2 - e 2 }+
zr _101-1- 92
-2iYT1{—1+ e 2 } (5. 33)
Vr,r,

When |x|<b, y =0, andy = 0., i.e. on the upper and lower faces of the
crack ;=7 8,=0 and

8uD = - Tyr(ke® + e™) + 2i T Vr r (k+1), (5.34)
Y=o
Thus

8uu = - T{(k+1)x, (6 = 0),

y=0 (5. 35)
Suv = 2T1(k+l) Vr,r,, (6 = 0},

=0

8uu = T (k+1)x, (6 = =),

y=0 (5. 36)
8uv = 2T(k+1) Vryry, (0 = 7).

y:

Thus in this case the tangential displacement vanishes with the x-co-ordinate
of the point while both the transverse and tangential displacements remain
bounded.

Case (iv). Finally we shall consider the case when the crack is subject
to the following conditions:

Shear at infinity, i.e. T, = - T,, a = %, this gives shear T; parallel
to the axes. In this case
2ie .
C;=Cy=0, a,=0, a;=-4Tye = -4iT,. (5.37)

So we get

Z Z
Q(z) = 2i Ty|1- ———1|, ¥'(2) = 2i T, | === - (5.38)
22 - b2 z2° - D
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2

yb .3
@ = .9 — T e1§(01+02)+
(r1r2)3/2
(5.39)
2r- g]_ + 92
+ T,|21 + TSin(@———— :
Vr ry 2
Therefore
2- 0, + 0,
LR T, Sin(0 - ———— . (5.40)
riry 2
y2p* yb? 3
71-72|=|¢]=2T1 1+ o -2 3/281n§(91+02)
(ryry) (ryry)
r? 0,+0,\ 2yb’r 0.+ 0, 5
+ Sin? |6 - - Sin(0 -——— }Cos —(0; + 0;)
rr, 2 (r;r,) 2
(5.41)
To get the approximate value of the maximum shear near the end (b, 0) we take
b®y 3 i 3
o = - ZTI—T/Q[COS —2—(91+ 0,) +18Sin 3(91+ 92):| +
(r;r,)

(5.42)

2r 91 + 02
+ T1 Sin -— ).
\/r‘lr2 2
Therefore

2 2 2
T /by
(o)< 4 = < +% : (5.43)

Fifg \TpTy

Thus the maximum shear lies between

T /By T oy
~- r) and +r
Vrlrz I‘lrz VI I‘z vr.r

1 172

1482 01+92
; :

8uD = 2irT (Ke' + Ke™) - ZiTl\/rlrz[Ke 2 - e 2
r _1(9-91+92)
-4YT, |1 - e 2 :
VI‘II‘Z

When |x| <b, ony =0; and y = 0., i.e. on the upper and lower faces
of the crack 91 = 7, 92 = 0, and

(5.44)

8 uD = ZirTl(keie + e"i0) + 2T, (k+1) Vr T, . (5.45)
y=0

Therefore
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8uu = 2T(k+1) Vriry, (6 = 0),
D=0

8uv = 2T,(k +1) x, (6 =
y=20

8uu = 2T (k+1) Vr;r,, (0 =7),
Y=0

8uv=-2T1(k+1)x, (0 =
Y=O

0)

7).

413

(5.486)

(5.47)

Thus in this case, like case (ii), the transverse displacement varies with
the x-co-ordinate and vanishes at the origin while both the tangential and

transverse displacements are bounded.

\\
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